Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
This study explores the potential of the large language model GPT-4 as an automated tool for qualitative data analysis by educational researchers, exploring which techniques are most successful for different types of constructs. Specifically, we assess three different prompt engineering strategies — Zero-shot, Few-shot, and Few-shot with contextual information — as well as the use of embeddings. We do so in the context of qualitatively coding three distinct educational datasets: Algebra I semi-personalized tutoring session transcripts, student observations in a game-based learning environment, and debugging behaviours in an introductory programming course. We evaluated the performance of each approach based on its inter-rater agreement with human coders and explored how different methods vary in effectiveness depending on a construct’s degree of clarity, concreteness, objectivity, granularity, and specificity. Our findings suggest that while GPT-4 can code a broad range of constructs, no single method consistently outperforms the others, and the selection of a particular method should be tailored to the specific properties of the construct and context being analyzed. We also found that GPT-4 has the most difficulty with the same constructs than human coders find more difficult to reach inter-rater reliability on.more » « lessFree, publicly-accessible full text available March 27, 2026
-
Free, publicly-accessible full text available March 3, 2026
-
Mills, Caitlin; Alexandron, Giora; Taibi, Davide; Lo_Bosco, Giosuè; Paquette, Luc (Ed.)Research on epistemic emotions has often focused on how students transition between affective states (e.g., affect dynamics). More recently, studies have examined the properties of cases where a student remains in the same affective state over time, finding that the duration of a student's affective state is important for multiple learning outcomes. However, the likelihood of remaining in a given affective state has not been widely studied across different methods or systems. Additionally, the role of motivational factors in the persistence or decay of affective states remains underexplored. This study builds on two prior investigations into the exponential decay of epistemic emotions, expanding the analysis of affective chronometry by incorporating two detection methods based on student self-reports and trained observer labels in a game-based learning environment. We also examine the relationship between motivational measures and affective decay. Our findings indicate that boredom exhibits the slowest decay across both detection methods, while confusion is the least persistent. Furthermore, we found that higher situational interest and self-efficacy are associated with greater persistence in engaged concentration, as identified by both detection methods. This work provides novel insights into how motivational factors shape affective chronometry, contributing to a deeper understanding of the temporal dynamics of epistemic emotions.more » « lessFree, publicly-accessible full text available January 1, 2026
-
Free, publicly-accessible full text available December 5, 2025
-
Benjamin, Paaßen; Carrie, Demmans Epp (Ed.)The educational data mining community has extensively investigated affect detection in learning platforms, finding associations between affective states and a wide range of learning outcomes. Based on these insights, several studies have used affect detectors to create interventions tailored to respond to when students are bored, confused, or frustrated. However, these detector-based interventions have depended on detecting affect when it occurs and therefore inherently respond to affective states after they have begun. This might not always be soon enough to avoid a negative experience for the student. In this paper, we aim to predict students' affective states in advance. Within our approach, we attempt to determine the maximum prediction window where detector performance remains sufficiently high, documenting the decay in performance when this prediction horizon is increased. Our results indicate that it is possible to predict confusion, frustration, and boredom in advance with performance over chance for prediction horizons of 120, 40, and 50 seconds, respectively. These findings open the door to designing more timely interventions.more » « less
-
Benjamin, Paaßen; Carrie, Demmans Epp (Ed.)Research into student affect detection has historically relied on ground truth measures of emotion that utilize one of three sources of data: (1) self-report data, (2) classroom observations, or (3) sensor data that is retrospectively labeled. Although a few studies have compared sensor- and observation-based ap-proaches to student affective modeling, less work has explored the relationship between self-report and classroom observa-tions. In this study, we use both recurring self-reports (SR) and classroom observation (BROMP) to measure student emotion during a study involving middle school students interacting with a game-based learning environment for microbiology educa-tion. We use supervised machine learning to develop two sets of affect detectors corresponding to SR and BROMP-based measures of student emotion, respectively. We compare the two sets of detectors in terms of their most relevant features, as well as correlations of their output with measures of student learning and interest. Results show that highly predictive features in the SR detectors are different from those selected for BROMP-based detectors. The associations with interest and motivation measures show that while SR detectors captured underlying motivations, the BROMP detectors seemed to capture more in-the-moment information about the student申fs experience. Evi-dence suggests that there is benefit of using both sources of data to model different components of student affect.more » « less
An official website of the United States government
